Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.106
Filtrar
1.
Microbiol Spectr ; 12(4): e0389623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376151

RESUMO

The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.


Assuntos
Acetaldeído/análogos & derivados , Anti-Infecciosos , Infecções por Escherichia coli , Pentosefosfatos , Pró-Fármacos , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Infecções Urinárias/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Anti-Infecciosos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli Uropatogênica/metabolismo
2.
ACS Infect Dis ; 9(7): 1387-1395, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37310810

RESUMO

Malaria, a mosquito-borne disease caused by several parasites of the Plasmodium genus, remains a huge threat to global public health. There are an estimated 0.5 million malaria deaths each year, mostly among African children. Unlike humans, Plasmodium parasites and a number of important pathogenic bacteria employ the methyl erythritol phosphate (MEP) pathway for isoprenoid synthesis. Thus, the MEP pathway represents a promising set of drug targets for antimalarial and antibacterial compounds. Here, we present new unsaturated MEPicide inhibitors of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway. A number of these compounds have demonstrated robust inhibition of Plasmodium falciparum DXR, potent antiparasitic activity, and low cytotoxicity against HepG2 cells. Parasites treated with active compounds are rescued by isopentenyl pyrophosphate, the product of the MEP pathway. With higher levels of DXR substrate, parasites acquire resistance to active compounds. These results further confirm the on-target inhibition of DXR in parasites by the inhibitors. Stability in mouse liver microsomes is high for the phosphonate salts, but remains a challenge for the prodrugs. Taken together, the potent activity and on-target mechanism of action of this series further validate DXR as an antimalarial drug target and the α,ß-unsaturation moiety as an important structural component.


Assuntos
Antimaláricos , Fosfomicina , Criança , Humanos , Animais , Camundongos , Plasmodium falciparum , Fosfomicina/farmacologia , Fosfomicina/química , Pentosefosfatos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química
3.
Sci Rep ; 12(1): 7221, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508530

RESUMO

The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-D-xylulose 5-phosphate synthase (DXPS) catalyzes the first reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the first DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main difference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a "fork-like" motif could be identified in the enamine structure, using a different residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specific for MtDXPS through structure-based drug design.


Assuntos
Mycobacterium tuberculosis , Animais , Antibacterianos/farmacologia , Sítios de Ligação , Mycobacterium tuberculosis/metabolismo , Pentosefosfatos , Transferases/metabolismo
4.
Nat Metab ; 4(1): 123-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102339

RESUMO

Vascular mural cells (vMCs) play an essential role in the development and maturation of the vasculature by promoting vessel stabilization through their interactions with endothelial cells. Whether endothelial metabolism influences mural cell recruitment and differentiation is unknown. Here, we show that the oxidative pentose phosphate pathway (oxPPP) in endothelial cells is required for establishing vMC coverage of the dorsal aorta during early vertebrate development in zebrafish and mice. We demonstrate that laminar shear stress and blood flow maintain oxPPP activity, which in turn, promotes elastin expression in blood vessels through production of ribose-5-phosphate. Elastin is both necessary and sufficient to drive vMC recruitment and maintenance when the oxPPP is active. In summary, our work demonstrates that endothelial cell metabolism regulates blood vessel maturation by controlling vascular matrix composition and vMC recruitment.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Matriz Extracelular/metabolismo , Fosforilação Oxidativa , Via de Pentose Fosfato , Animais , Biomarcadores , Elastina/biossíntese , Elastina/genética , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Expressão Gênica , Genes Reporter , Glucose/metabolismo , Hemodinâmica , Camundongos , Camundongos Knockout , Modelos Biológicos , Estresse Oxidativo , Pentosefosfatos/metabolismo , Peixe-Zebra
5.
J Struct Biol ; 213(2): 107733, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33819634

RESUMO

The cell wall of many pathogenic Gram-positive bacteria contains ribitol-phosphate wall teichoic acid (WTA), a polymer that is linked to virulence and regulation of essential physiological processes including cell division. CDP-ribitol, the activated precursor for ribitol-phosphate polymerization, is synthesized by a cytidylyltransferase and reductase pair known as TarI and TarJ, respectively. In this study, we present crystal structures of Staphylococcus aureus TarI and TarJ in their apo forms and in complex with substrates and products. The TarI structures illustrate the mechanism of CDP-ribitol synthesis from CTP and ribitol-phosphate and reveal structural changes required for substrate binding and catalysis. Insights into the upstream step of ribulose-phosphate reduction to ribitol-phosphate is provided by the structures of TarJ. Furthermore, we propose a general topology of the enzymes in a heterotetrameric form built using restraints from crosslinking mass spectrometry analysis. Together, our data present molecular details of CDP-ribitol production that may aid in the design of inhibitors against WTA biosynthesis.


Assuntos
Açúcares de Nucleosídeo Difosfato/biossíntese , Nucleotidiltransferases/química , Oxirredutases/química , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Parede Celular/metabolismo , Cristalografia por Raios X , Espectrometria de Massas/métodos , Modelos Moleculares , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oxirredutases/metabolismo , Pentosefosfatos/metabolismo , Multimerização Proteica , Ribulosefosfatos/metabolismo , Staphylococcus aureus/citologia , Staphylococcus aureus/enzimologia
6.
Anal Biochem ; 622: 114116, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33716126

RESUMO

Arabinose 5-phosphate isomerase (API) catalyzes the reversible isomerization of Ribulose 5-phosphate (Ru5P) to Arabinose 5-Phosphate (Ar5P) for the production of 3-deoxy-2-octulosonic acid 8-phosphate (KDO), a component of bacterial lipopolysaccharide (LPS) of gram-negative bacteria. API is an attractive target for therapeutic development against gram-negative bacterial pathogens. The current assay method of API activity utilizes a general reaction for keto sugar determination in a secondary, 3-h color development reaction with 25 N sulfuric acid which poses hazard to both personnel and instrumentation. We therefore aimed to develop a more user friendly assay of the enzyme. Since Ru5P absorbs in the UV region and contains at least 2 chiral centers, it can be expected to display circular dichroism (CD). A wavelength scan revealed indeed Ru5P displays a pronounced negative ellipticity of 30,560 mDeg M-1cm-1 at 279 nm in Tris buffer pH 9.1 but Ar5P does not have any CD. API enzymatic reactions were monitored directly and continuously in real time by following the disappearance of CD from the Ru5P substrate, or by the appearance of CD from Ar5P substrate. The CD signal at this wavelength was not affected by absorption of the enzyme protein or of small molecules, or turbidity of the solution. Common additives in protein and enzyme reaction mixtures such as detergents, metals, and 5% dimethylsulfoxide did not interfere with the CD signal. Assay reactions of 1-3 min consistently yielded reproducible results. Introduction of accessories in a spectropolarimeter will easily adapt this assay to high throughput format for screening thousands of small molecules as inhibitor candidates of API.


Assuntos
Aldose-Cetose Isomerases/análise , Dicroísmo Circular/métodos , Ensaios Enzimáticos/métodos , Proteínas de Bactérias/metabolismo , Catálise , Francisella tularensis/metabolismo , Lipopolissacarídeos/metabolismo , Pentosefosfatos/metabolismo , Ribulosefosfatos/análise , Ribulosefosfatos/metabolismo , Especificidade por Substrato , Açúcares Ácidos/metabolismo , Fosfatos Açúcares/metabolismo
7.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467778

RESUMO

In the methyl-D-erythritol-4-phosphate (MEP) pathway, 1-deoxy-D-xylose-5-phosphate synthase (DXS) is considered the key enzyme for the biosynthesis of terpenoids. In this study, PmDXS (MK970590) was isolated from Pinus massoniana. Bioinformatics analysis revealed homology of MK970590 with DXS proteins from other species. Relative expression analysis suggested that PmDXS expression was higher in roots than in other plant parts, and the treatment of P. massoniana seedlings with mechanical injury via 15% polyethylene glycol 6000, 10 mM H2O2, 50 µM ethephon (ETH), 10 mM methyl jasmonate (MeJA), and 1 mM salicylic acid (SA) resulted in an increased expression of PmDXS. pET28a-PmDXS was expressed in Escherichia coli TransB (DE3) cells, and stress analysis showed that the recombinant protein was involved in resistance to NaCl and drought stresses. The subcellular localization of PmDXS was in the chloroplast. We also cloned a full-length 1024 bp PmDXS promoter. GUS expression was observed in Nicotiana benthamiana roots, stems, and leaves. PmDXS overexpression significantly increased carotenoid, chlorophyll a, and chlorophyll b contents and DXS enzyme activity, suggesting that DXS is important in isoprenoid biosynthesis. This study provides a theoretical basis for molecular breeding for terpene synthesis regulation and resistance.


Assuntos
Pentosefosfatos/química , Pinus/enzimologia , Terpenos/química , Transferases/metabolismo , Acetatos/química , Clorofila/química , Clorofila A/química , Biologia Computacional , Ciclopentanos/química , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Oxilipinas/química , Pigmentação , Folhas de Planta , Caules de Planta/enzimologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Ácido Salicílico/química , Transferases/genética , Xilose
8.
Plant Cell Environ ; 44(7): 2365-2385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32583881

RESUMO

The mechanism of heat priming, triggering alteration of secondary metabolite pathway fluxes and pools to enhance heat tolerance is not well understood. Achillea millefolium is an important medicinal herbal plant, rich in terpenoids and phenolics. In this study, the potential of heat priming treatment (35°C for 1 hr) to enhance tolerance of Achillea plants upon subsequent heat shock (45°C for 5 min) stress was investigated through recovery (0.5-72 hr). The priming treatment itself had minor impacts on photosynthesis, led to moderate increases in the emission of lipoxygenase (LOX) pathway volatiles and isoprene, and to major elicitation of monoterpene and benzaldehyde emissions in late stages of recovery. Upon subsequent heat shock, in primed plants, the rise in LOX and reduction in photosynthetic rate (A) was much less, stomatal conductance (gs ) was initially enhanced, terpene emissions were greater and recovery of A occurred faster, indicating enhanced heat tolerance. Additionally, primed plants accumulated higher contents of total phenolics and condensed tannins at the end of the recovery. These results collectively indicate that heat priming improved photosynthesis upon subsequent heat shock by enhancing gs and synthesis of volatile and non-volatile secondary compounds with antioxidative characteristics, thereby maintaining the integrity of leaf membranes under stress.


Assuntos
Achillea/fisiologia , Fenóis/metabolismo , Terpenos/metabolismo , Termotolerância/fisiologia , Achillea/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Flavonoides/metabolismo , Resposta ao Choque Térmico/fisiologia , Lipoxigenase/metabolismo , Pentosefosfatos/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Proantocianidinas/metabolismo , Metabolismo Secundário , Fosfatos Açúcares/metabolismo , Compostos Orgânicos Voláteis/metabolismo
9.
Sci Rep ; 10(1): 4935, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188898

RESUMO

The laminin-binding glycan (matriglycan) on α-dystroglycan (α-DG) enables diverse roles, from neuronal development to muscle integrity. Reduction or loss of matriglycan has also been implicated in cancer development and metastasis, and specifically associated with high-grade tumors and poor prognoses in breast cancers. Hyperglycosylation of α-DG with LARGE overexpression is shown to inhibit cancer cell growth and tumorigenicity. We recently demonstrated that ribitol, considered to be a metabolic end-product, enhances matriglycan expression in dystrophic muscles in vivo. In the current study, we tested the hypothesis that ribitol could also enhance matriglycan expression in cancer cells. Our results showed for the first time that ribitol is able to significantly enhance the expression of matriglycan on α-DG in breast cancer cells. The ribitol effect is associated with an increase in levels of CDP-ribitol, the substrate for the ribitol-5-phosphate transferases FKRP and FKTN. Direct use of CDP-ribitol is also effective for matriglycan expression. Ribitol treatment does not alter the expression of FKRP, FKTN as well as LARGEs and ISPD which are critical for the synthesis of matriglycan. The results suggest that alteration in substrates could also be involved in regulation of matriglycan expression. Interestingly, expression of matriglycan is related to cell cycle progression with highest levels in S and G2 phases and ribitol treatment does not alter the pattern. Although matriglycan up-regulation does not affect cell cycle progression and proliferation of the cancer cells tested, the novel substrate-mediated treatment opens a new approach easily applicable to experimental systems in vivo for further exploitation of matriglycan expression in cancer progression and for therapeutic potential.


Assuntos
Neoplasias da Mama/metabolismo , Distroglicanas/metabolismo , Ribitol/metabolismo , Neoplasias da Mama/genética , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Feminino , Regulação Neoplásica da Expressão Gênica , Glicosilação/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Pentosefosfatos/metabolismo , Ribitol/farmacologia , Espectrometria de Massas em Tandem
10.
Biosci Rep ; 40(8)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29500317

RESUMO

Transketolase catalyzes the transfer of a glycolaldehyde residue from ketose (the donor substrate) to aldose (the acceptor substrate). In the absence of aldose, transketolase catalyzes a one-substrate reaction that involves only ketose. The mechanism of this reaction is unknown. Here, we show that hydroxypyruvate serves as a substrate for the one-substrate reaction and, as well as with the xylulose-5-phosphate, the reaction product is erythrulose rather than glycolaldehyde. The amount of erythrulose released into the medium is equimolar to a double amount of the transformed substrate. This could only be the case if the glycol aldehyde formed by conversion of the first ketose molecule (the product of the first half reaction) remains bound to the enzyme, waiting for condensation with the second molecule of glycol aldehyde. Using mass spectrometry of catalytic intermediates and their subsequent fragmentation, we show here that interaction of the holotransketolase with hydroxypyruvate results in the equiprobable binding of the active glycolaldehyde to the thiazole ring of thiamine diphosphate and to the amino group of its aminopyrimidine ring. We also show that these two loci can accommodate simultaneously two glycolaldehyde molecules. It explains well their condensation without release into the medium, which we have shown earlier.


Assuntos
Pentosefosfatos/metabolismo , Piruvatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Tetroses/metabolismo , Transcetolase/metabolismo , Sítios de Ligação , Domínio Catalítico , Cinética , Simulação de Dinâmica Molecular , Pentosefosfatos/química , Ligação Proteica , Conformação Proteica , Piruvatos/química , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Especificidade por Substrato , Espectrometria de Massas em Tandem , Tetroses/química , Transcetolase/química
11.
Biochemistry ; 58(49): 4970-4982, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31724401

RESUMO

The product of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase, DXP, feeds into the bacterial biosynthesis of isoprenoids, thiamin diphosphate (ThDP), and pyridoxal phosphate. DXP is essential for human pathogens but not utilized by humans; thus, DXP synthase is an attractive anti-infective target. The unique ThDP-dependent mechanism and structure of DXP synthase offer ideal opportunities for selective targeting. Upon reaction with pyruvate, DXP synthase uniquely stabilizes the predecarboxylation intermediate, C2α-lactylThDP (LThDP), in a closed conformation. Subsequent binding of d-glyceraldehyde 3-phosphate induces an open conformation that is proposed to destabilize LThDP, triggering decarboxylation. Evidence for the closed and open conformations has been revealed by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography, which indicate that H49 and H299 are involved in conformational dynamics and movement of the fork and spoon motifs away from the active site is important for the closed-to-open transition. Interestingly, H49 and H299 are critical for DXP formation and interact with the predecarboxylation intermediate in the closed conformation. H299 is removed from the active site in the open conformation of the postdecarboxylation state. In this study, we show that substitution at H49 and H299 negatively impacts LThDP formation by shifting the conformational equilibrium of DXP synthase toward an open conformation. We also present a method for monitoring the dynamics of the spoon motif that uncovered a previously undetected role for H49 in coordinating the closed conformation. Overall, our results suggest that H49 and H299 are critical for the closed, predecarboxylation state providing the first direct link between catalysis and conformational dynamics.


Assuntos
Escherichia coli/enzimologia , Histidina/metabolismo , Transferases/metabolismo , Aldose-Cetose Isomerases , Motivos de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Histidina/química , Pentosefosfatos/química , Pentosefosfatos/metabolismo , Conformação Proteica , Especificidade por Substrato , Transferases/química , Transferases/genética
12.
J Comput Aided Mol Des ; 33(10): 927-940, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31654265

RESUMO

Proteins of the independent mevalonate pathway for isoprenoid biosynthesis are important targets for the development of new antibacterial compounds as this pathway is present in most pathogenic organisms such as Mycobacterium tuberculosis, DPlasmodium falciparum and Escherichia coli, but is not present in mammalian species, including humans. Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is an important target in this pathway and the most effective DXR inhibitor to date is fosmidomycin, which is used to treat malaria and, more recently, tuberculosis. Recently, Armstrong C. M. et al. showed that a mutant of DXR, S222T, induces a loss of the fosmidomycin inhibition efficiency, even though the bacteria culture is still viable and able to produce isoprenoids. As this represents a potential fosmidomycin-resistant mutation, it is important to understand the mechanism of this apparent mutation-induced resistance to fosmidomycin. Here, we used molecular dynamics simulations and Molecular Mechanics/Poisson Boltzmann Surface Area analysis to understand the structural and energetic basis of the resistance. Our results suggest that the point mutation results in changes to the structural dynamics of an active site loop that probably protects the active site and facilitates enzymatic reaction. From the simulation analysis, we also showed that the mutation results in changes in the interaction energy profiles in a way that can explain the observed activity of the mutant protein toward the natural inhibitor deoxy-D-xylulose 5-phosphate. These results should be taken into consideration in future efforts to develop new therapeutic antibiotic compounds that target DXR.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Resistência Microbiana a Medicamentos , Escherichia coli/enzimologia , Fosfomicina/análogos & derivados , Simulação de Dinâmica Molecular , Mutação , Aldose-Cetose Isomerases/genética , Antibacterianos/administração & dosagem , Antibacterianos/metabolismo , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Fosfomicina/administração & dosagem , Fosfomicina/metabolismo , Ligantes , Modelos Teóricos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Pentosefosfatos/metabolismo , Conformação Proteica
13.
J Mol Biol ; 431(19): 3690-3705, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31381898

RESUMO

In response to the stress of infection, Mycobacterium tuberculosis (Mtb) reprograms its metabolism to accommodate nutrient and energetic demands in a changing environment. Pyruvate kinase (PYK) is an essential glycolytic enzyme in the phosphoenolpyruvate-pyruvate-oxaloacetate node that is a central switch point for carbon flux distribution. Here we show that the competitive binding of pentose monophosphate inhibitors or the activator glucose 6-phosphate (G6P) to MtbPYK tightly regulates the metabolic flux. Intriguingly, pentose monophosphates were found to share the same binding site with G6P. The determination of a crystal structure of MtbPYK with bound ribose 5-phosphate (R5P), combined with biochemical analyses and molecular dynamic simulations, revealed that the allosteric inhibitor pentose monophosphate increases PYK structural dynamics, weakens the structural network communication, and impairs substrate binding. G6P, on the other hand, primes and activates the tetramer by decreasing protein flexibility and strengthening allosteric coupling. Therefore, we propose that MtbPYK uses these differences in conformational dynamics to up- and down-regulate enzymic activity. Importantly, metabolome profiling in mycobacteria reveals a significant increase in the levels of pentose monophosphate during hypoxia, which provides insights into how PYK uses dynamics of the tetramer as a competitive allosteric mechanism to retard glycolysis and facilitate metabolic reprogramming toward the pentose-phosphate pathway for achieving redox balance and an anticipatory metabolic response in Mtb.


Assuntos
Hipóxia/enzimologia , Mycobacterium tuberculosis/enzimologia , Via de Pentose Fosfato , Piruvato Quinase/metabolismo , Regulação Alostérica/efeitos dos fármacos , Carbono/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Glucose-6-Fosfato/metabolismo , Cinética , Mycobacterium tuberculosis/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Pentosefosfatos/química , Pentosefosfatos/farmacologia , Conformação Proteica , Domínios Proteicos , Piruvato Quinase/química , Temperatura
14.
J Biol Chem ; 294(33): 12405-12414, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31239351

RESUMO

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) into 1-deoxy-d-xylulose 5-phosphate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attractive antibacterial target. Here, we investigate DXPS from Deinococcus radiodurans (DrDXPS), showing that it has similar kinetic parameters Kmd-GAP and Kmpyruvate (54 ± 3 and 11 ± 1 µm, respectively) and comparable catalytic activity (kcat = 45 ± 2 min-1) with previously studied bacterial DXPS enzymes and employing it to obtain missing structural data on this enzyme family. In particular, we have determined crystallographic snapshots of DrDXPS in two states along the reaction coordinate: a structure of DrDXPS bound to C2α-phosphonolactylThDP (PLThDP), mimicking the native pre-decarboxylation intermediate C2α-lactylThDP (LThDP), and a native post-decarboxylation state with a bound enamine intermediate. The 1.94-Å-resolution structure of PLThDP-bound DrDXPS delineates how two active-site histidine residues stabilize the LThDP intermediate. Meanwhile, the 2.40-Å-resolution structure of an enamine intermediate-bound DrDXPS reveals how a previously unknown 17-Å conformational change removes one of the two histidine residues from the active site, likely triggering LThDP decarboxylation to form the enamine intermediate. These results provide insight into how the bi-substrate enzyme DXPS limits side reactions by arresting the reaction on the less reactive LThDP intermediate when its cosubstrate is absent. They also offer a molecular basis for previous low-resolution experimental observations that correlate decarboxylation of LThDP with protein conformational changes.


Assuntos
Proteínas de Bactérias/química , Deinococcus/enzimologia , Gliceraldeído 3-Fosfato/química , Pentosefosfatos/química , Transferases/química , Cristalografia por Raios X , Domínios Proteicos
15.
J Struct Biol ; 207(1): 85-102, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059775

RESUMO

Phosphoketolases (PK) are TPP-dependent enzymes which play essential roles in carbohydrate metabolism of numerous bacteria. Depending on the substrate specificity PKs can be subdivided into xylulose 5-phosphate (X5P) specific PKs (XPKs) and PKs which accept both X5P and fructose 6-phosphate (F6P) (XFPKs). Despite their key metabolic importance, so far only the crystal structures of two XFPKs have been reported. There are no reported structures for any XPKs and for any complexes between PK and substrate. One of the major unknowns concerning PKs mechanism of action is related to the structural determinants of PKs substrate specificity for X5P or F6P. We report here the crystal structure of XPK from Lactococcus lactis (XPK-Ll) at 2.1 Šresolution. Using small angle X-ray scattering (SAXS) we proved that XPK-Ll is a dimer in solution. Towards better understanding of PKs substrate specificity, we performed flexible docking of TPP-X5P and TPP-F6P on crystal structures of XPK-Ll, two XFPKs and transketolase (TK). Calculated structure-based binding energies consistently support XPK-Ll preference for X5P. Analysis of structural models thus obtained show that substrates adopt moderately different conformation in PKs active sites following distinct networks of polar interactions. Based on the here reported structure of XPK-Ll we propose the most probable amino acid residues involved in the catalytic steps of reaction mechanism. Altogether our results suggest that PKs substrate preference for X5P or F6P is the outcome of a fine balance between specific binding network and dissimilar catalytic residues depending on the enzyme (XPK or XFPK) - substrate (X5P or F6P) couples.


Assuntos
Aldeído Liases/química , Lactococcus lactis/enzimologia , Pentosefosfatos/metabolismo , Aldeído Liases/metabolismo , Proteínas de Bactérias/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Frutosefosfatos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Especificidade por Substrato
16.
J Biosci Bioeng ; 128(1): 33-38, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30711353

RESUMO

In this work, we analyzed several genes participating in the rearrangement pathway for xylulose 5-phosphate (Xu5P) in the methylotrophic yeast Pichia pastoris (syn. Komagataella phaffii). P. pastoris has two set of genes for fructose-1,6-bisphosphate aldolase (FBA1 and FBA2) and transaldolase (TAL1 and TAL2), although there are single-copy genes for fructose-1,6-bisphosphatase (FBP1) and transketolase (TKL1), respectively. Expressions of FBP1 and TAL2 were upregulated by non-fermentative carbon sources, especially methanol was the best inducer for them, and FBA2 was induced only by methanol. On the other hand, FBA1, TAL1 and TKL1 showed constitutive expression. Strain fbp1Δ showed severe growth defect on methanol and non-fermentable carbon sources, and growth rate of strain fba2Δ in methanol medium was slightly decreased. Moreover, Fba2p and Tal2p possessed peroxisome targeting signal type 1 (PTS1), and EGFP-Fba2p and EGFP-Tal2p were found to be localized in peroxisomes. From these findings, it was suggested that Fba2p, Fbp1p and Tal2p participate in the rearrangement pathway for Xu5P in peroxisomes, and that the altered Calvin cycle and non-oxidative pentose phosphate pathway involving Tal2p function in a complementary manner.


Assuntos
Frutose-Bifosfato Aldolase/genética , Metanol/metabolismo , Pentosefosfatos/metabolismo , Pichia , Transaldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Redes e Vias Metabólicas/genética , Peroxissomos/genética , Peroxissomos/metabolismo , Pichia/enzimologia , Pichia/genética , Pichia/crescimento & desenvolvimento , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Transaldolase/metabolismo , Transcetolase/genética , Transcetolase/metabolismo
17.
Protein J ; 38(2): 160-166, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30707333

RESUMO

α-Ketoacids can be determined by HPLC through pre-column derivatization with 1,2-diamino-4,5-methylenedioxybenzene (DMB) as a derivatizing reagent. Using this method, the specific activity and the steady-state kinetic of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) were measured. Firstly, DXS substrate pyruvate was derivatized with DMB in acidic solution; then the corresponding quinoxalinone was elucidated by LC-ESI-MS and quantified by HPLC-UV. The optimum derivatization conditions were as follows: aqueous medium at pH 1.0, reaction temperature 80 °C, reaction time 60 min, molar ratio of DMB to pyruvate 10:1. The HPLC was run with isocratic elution using the mixture of methanol and water (60:40, v/v) as a mobile phase. The detective limit and the linear correlation range of the method were 0.05 µM and 0.002-1.0 mM (R = 0.994), respectively. The relative standard deviation (RSD) of six determinations was 2.48%. The steady-state kinetic parameters of DXS for pyruvate determined with the method were identical to the reported data. The established method is a practical route for evaluation of DXS activity, especially in the research and development of DXS inhibitors.


Assuntos
Proteínas de Bactérias/química , Transferases/química , Cromatografia Líquida de Alta Pressão/métodos , Escherichia coli/enzimologia , Cinética , Pentosefosfatos/química , Fenilenodiaminas/química
18.
ACS Infect Dis ; 5(3): 406-417, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30614674

RESUMO

To fight the growing threat of antibiotic resistance, new antibiotics are required that target essential bacterial processes other than protein, DNA/RNA, and cell wall synthesis, which constitute the majority of currently used antibiotics. 1-Deoxy-d-xylulose-5-phosphate (DXP) synthase is a vital enzyme in bacterial central metabolism, feeding into the de novo synthesis of thiamine diphosphate, pyridoxal phosphate, and essential isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate. While potent and selective inhibitors of DXP synthase in vitro activity have been discovered, their antibacterial activity is modest. To improve the antibacterial activity of selective alkyl acetylphosphonate (alkylAP) inhibitors of DXP synthase, we synthesized peptidic enamide prodrugs of alkylAPs inspired by the natural product dehydrophos, a prodrug of methyl acetylphosphonate. This prodrug strategy achieves dramatic increases in activity against Gram-negative pathogens for two alkylAPs, butyl acetylphosphonate and homopropargyl acetylphosphonate, decreasing minimum inhibitory concentrations against Escherichia coli by 33- and nearly 2000-fold, respectively. Antimicrobial studies and LC-MS/MS analysis of alkylAP-treated E. coli establish that the increased potency of prodrugs is due to increased accumulation of alkylAP inhibitors of DXP synthase via transport of the prodrug through the OppA peptide permease and subsequent amide hydrolysis. This work demonstrates the promise of targeting DXP synthase for the development of novel antibacterial agents.


Assuntos
Antibacterianos/química , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Pró-Fármacos/química , Transferases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Pentosefosfatos/metabolismo , Pró-Fármacos/farmacologia , Transferases/química , Transferases/metabolismo
19.
Microbiol Mol Biol Rev ; 83(1)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567937

RESUMO

Ribosyl 1,5-bisphosphate (PRibP) was discovered 65 years ago and was believed to be an important intermediate in ribonucleotide metabolism, a role immediately taken over by its "big brother" phosphoribosyldiphosphate. Only recently has PRibP come back into focus as an important player in the metabolism of ribonucleotides with the discovery of the pentose bisphosphate pathway that comprises, among others, the intermediates PRibP and ribulose 1,5-bisphosphate (cf. ribose 5-phosphate and ribulose 5-phosphate of the pentose phosphate pathway). Enzymes of several pathways produce and utilize PRibP not only in ribonucleotide metabolism but also in the catabolism of phosphonates, i.e., compounds containing a carbon-phosphorus bond. Pathways for PRibP metabolism are found in all three domains of life, most prominently among organisms of the archaeal domain, where they have been identified either experimentally or by bioinformatic analysis within all of the four main taxonomic groups, Euryarchaeota, TACK, DPANN, and Asgard. Advances in molecular genetics of archaea have greatly improved the understanding of the physiology of PRibP metabolism, and reconciliation of molecular enzymology and three-dimensional structure analysis of enzymes producing or utilizing PRibP emphasize the versatility of the compound. Finally, PRibP is also an effector of several metabolic activities in many organisms, including higher organisms such as mammals. In the present review, we describe all aspects of PRibP metabolism, with emphasis on the biochemical, genetic, and physiological aspects of the enzymes that produce or utilize PRibP. The inclusion of high-resolution structures of relevant enzymes that bind PRibP provides evidence for the flexibility and importance of the compound in metabolism.


Assuntos
Metabolismo Energético , Via de Pentose Fosfato , Pentosefosfatos/química , Pentosefosfatos/metabolismo , Sequência de Aminoácidos , Archaea/enzimologia , Bactérias/enzimologia , Humanos , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Pentosefosfatos/genética , Fosforilases/química , Fosforilases/genética , Fosforilases/metabolismo , Conformação Proteica , Ribonucleotídeos/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
20.
Nature ; 563(7733): 705-709, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464342

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of difficult-to-treat, often fatal infections in humans1,2. Most humans have antibodies against S. aureus, but these are highly variable and often not protective in immunocompromised patients3. Previous vaccine development programs have not been successful4. A large percentage of human antibodies against S. aureus target wall teichoic acid (WTA), a ribitol-phosphate (RboP) surface polymer modified with N-acetylglucosamine (GlcNAc)5,6. It is currently unknown whether the immune evasion capacities of MRSA are due to variation of dominant surface epitopes such as those associated with WTA. Here we show that a considerable proportion of the prominent healthcare-associated and livestock-associated MRSA clones CC5 and CC398, respectively, contain prophages that encode an alternative WTA glycosyltransferase. This enzyme, TarP, transfers GlcNAc to a different hydroxyl group of the WTA RboP than the standard enzyme TarS7, with important consequences for immune recognition. TarP-glycosylated WTA elicits 7.5-40-fold lower levels of immunoglobulin G in mice than TarS-modified WTA. Consistent with this, human sera contained only low levels of antibodies against TarP-modified WTA. Notably, mice immunized with TarS-modified WTA were not protected against infection with tarP-expressing MRSA, indicating that TarP is crucial for the capacity of S. aureus to evade host defences. High-resolution structural analyses of TarP bound to WTA components and uridine diphosphate GlcNAc (UDP-GlcNAc) explain the mechanism of altered RboP glycosylation and form a template for targeted inhibition of TarP. Our study reveals an immune evasion strategy of S. aureus based on averting the immunogenicity of its dominant glycoantigen WTA. These results will help with the identification of invariant S. aureus vaccine antigens and may enable the development of TarP inhibitors as a new strategy for rendering MRSA susceptible to human host defences.


Assuntos
Parede Celular/química , Parede Celular/imunologia , Evasão da Resposta Imune , Staphylococcus aureus Resistente à Meticilina/citologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Pentosefosfatos/imunologia , Ácidos Teicoicos/imunologia , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Adulto , Animais , Bacteriófagos/patogenicidade , Feminino , Glicosilação , Glicosiltransferases/metabolismo , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/química , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Pentosefosfatos/química , Pentosefosfatos/metabolismo , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...